Abstract
BackgroundAflatoxin contamination caused by Aspergillus flavus is a major constraint to peanut industry worldwide due to its toxicological effects to human and animals. Developing peanut varieties with resistance to seed infection and/or aflatoxin accumulation is the most effective and economic strategy for reducing aflatoxin risk in food chain. Breeding for resistance to aflatoxin in peanut is a challenging task for breeders because the genetic basis is still poorly understood. To identify the quantitative trait loci (QTLs) for resistance to aflatoxin contamination in peanut, a recombinant inbred line (RIL) population was developed from crossing Zhonghua 10 (susceptible) with ICG 12625 (resistant). The percent seed infection index (PSII), the contents of aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) of RILs were evaluated by a laboratory kernel inoculation assay.ResultsTwo QTLs were identified for PSII including one major QTL with 11.32–13.00% phenotypic variance explained (PVE). A total of 12 QTLs for aflatoxin accumulation were detected by unconditional analysis, and four of them (qAFB1A07 and qAFB1B06.1 for AFB1, qAFB2A07 and qAFB2B06 for AFB2) exhibited major and stable effects across multiple environments with 9.32–21.02% PVE. Furthermore, not only qAFB1A07 and qAFB2A07 were co-localized in the same genetic interval on LG A07, but qAFB1B06.1 was also co-localized with qAFB2B06 on LG B06. Conditional QTL mapping also confirmed that there was a strong interaction between resistance to AFB1 and AFB2 accumulation. Genotyping of RILs revealed that qAFB1A07 and qAFB1B06.1 interacted additively to improve the resistance to both AFB1 and AFB2 accumulation. Additionally, validation of the two markers was performed in diversified germplasm collection and four accessions with resistance to aflatoxin accumulation were identified.ConclusionsSingle major QTL for resistance to PSII and two important co-localized intervals associated with major QTLs for resistance to AFB1 and AFB2. Combination of these intervals could improve the resistance to aflatoxin accumulation in peanut. SSR markers linked to these intervals were identified and validated. The identified QTLs and associated markers exhibit potential to be applied in improvement of resistance to aflatoxin contamination.
Highlights
Aflatoxin contamination caused by Aspergillus flavus is a major constraint to peanut industry worldwide due to its toxicological effects to human and animals
Phenotypic evaluation of resistance to aflatoxin contamination The resistance performance of two parents and the Recombinant inbred lines (RILs) population was investigated by artificial inoculation with toxicogenic A. flavus in laboratory across three environments
This study is the first systematic report using linkage analysis to reveal the Quantitative trait locus (QTL) for two types of resistance i.e., resistance to A. flavus infection and aflatoxin accumulation in peanut based on multi-environment phenotyping
Summary
Aflatoxin contamination caused by Aspergillus flavus is a major constraint to peanut industry worldwide due to its toxicological effects to human and animals. Developing peanut varieties with resistance to seed infection and/or aflatoxin accumulation is the most effective and economic strategy for reducing aflatoxin risk in food chain. Breeding for resistance to aflatoxin in peanut is a challenging task for breeders because the genetic basis is still poorly understood. Peanut tend to be infected by A. flavus covering the whole industrial chain including pre-harvest, during harvest, post-harvest drying, in storage and during transport [6,7,8]. Development of peanut varieties with suitable resistance to A. flavus infection and/or aflatoxin production is considered to be the most effective and economical approach. The trait phenotyping faces high environmental influence and variable soil microbiome across environments and locations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.