Abstract

BackgroundGenomic aberration is a common feature of human cancers and also is one of the basic mechanisms that lead to overexpression of oncogenes and underexpression of tumor suppressor genes. Our study aims to identify frequent genomic changes in pancreatic cancer.Materials and MethodsWe used array comparative genomic hybridization (array CGH) to identify recurrent genomic alterations and validated the protein expression of selected genes by immunohistochemistry.ResultsSixteen gains and thirty-two losses occurred in more than 30% and 60% of the tumors, respectively. High-level amplifications at 7q21.3–q22.1 and 19q13.2 and homozygous deletions at 1p33–p32.3, 1p22.1, 1q22, 3q27.2, 6p22.3, 6p21.31, 12q13.2, 17p13.2, 17q21.31 and 22q13.1 were identified. Especially, amplification of AKT2 was detected in two carcinomas and homozygous deletion of CDKN2C in other two cases. In 15 independent validation samples, we found that AKT2 (19q13.2) and MCM7 (7q22.1) were amplified in 6 and 9 cases, and CAMTA2 (17p13.2) and PFN1 (17p13.2) were homozygously deleted in 3 and 1 cases. AKT2 and MCM7 were overexpressed, and CAMTA2 and PFN1 were underexpressed in pancreatic cancer tissues than in morphologically normal operative margin tissues. Both GISTIC and Genomic Workbench software identified 22q13.1 containing APOBEC3A and APOBEC3B as the only homozygous deletion region. And the expression levels of APOBEC3A and APOBEC3B were significantly lower in tumor tissues than in morphologically normal operative margin tissues. Further validation showed that overexpression of PSCA was significantly associated with lymph node metastasis, and overexpression of HMGA2 was significantly associated with invasive depth of pancreatic cancer.ConclusionThese recurrent genomic changes may be useful for revealing the mechanism of pancreatic carcinogenesis and providing candidate biomarkers.

Highlights

  • Genomic aberration is a common feature of human cancers and is one of the basic mechanisms that lead to overexpression of oncogenes and underexpression of tumor suppressor genes

  • Amplification of AKT2 was detected in two carcinomas and homozygous deletion of CDKN2C in other two cases

  • GISTIC analysis showed that copy number decrease of APOBEC3A (22q13.1) and APOBEC3B (22q13.1) was significant (Fig. 1 and Table 2)

Read more

Summary

Introduction

Genomic aberration is a common feature of human cancers and is one of the basic mechanisms that lead to overexpression of oncogenes and underexpression of tumor suppressor genes. In 15 independent validation samples, we found that AKT2 (19q13.2) and MCM7 (7q22.1) were amplified in 6 and 9 cases, and CAMTA2 (17p13.2) and PFN1 (17p13.2) were homozygously deleted in 3 and 1 cases. AKT2 and MCM7 were overexpressed, and CAMTA2 and PFN1 were underexpressed in pancreatic cancer tissues than in morphologically normal operative margin tissues. Both GISTIC and Genomic Workbench software identified 22q13.1 containing APOBEC3A and APOBEC3B as the only homozygous deletion region. Copy number changes are frequently found in cancers, and are believed to contribute to the initiation and progression of tumors by amplification and activation of oncogenes or deletion-induced down-expression of tumor suppressor genes. The available information is still limited, especially for Chinese pancreatic cancer

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.