Abstract

BackgroundSingle nucleotide polymorphisms (SNPs) are the most common type of genetic variation. Identification of large numbers of SNPs is helpful for genetic diversity analysis, map-based cloning, genome-wide association analyses and marker-assisted breeding. Recently, identifying genome-wide SNPs in allopolyploid Brassica napus (rapeseed, canola) by resequencing many accessions has become feasible, due to the availability of reference genomes of Brassica rapa (2n = AA) and Brassica oleracea (2n = CC), which are the progenitor species of B. napus (2n = AACC). Although many SNPs in B. napus have been released, the objective in the present study was to produce a larger, more informative set of SNPs for large-scale and efficient genotypic screening. Hence, short-read genome sequencing was conducted on ten elite B. napus accessions for SNP discovery. A subset of these SNPs was randomly selected for sequence validation and for genotyping efficiency testing using the Illumina GoldenGate assay.ResultsA total of 892,536 bi-allelic SNPs were discovered throughout the B. napus genome. A total of 36,458 putative amino acid variants were located in 13,552 protein-coding genes, which were predicted to have enriched binding and catalytic activity as a result. Using the GoldenGate genotyping platform, 94 of 96 SNPs sampled could effectively distinguish genotypes of 130 lines from two mapping populations, with an average call rate of 92%.ConclusionsDespite the polyploid nature of B. napus, nearly 900,000 simple SNPs were identified by whole genome resequencing. These SNPs were predicted to be effective in high-throughput genotyping assays (51% polymorphic SNPs, 92% average call rate using the GoldenGate assay, leading to an estimated >450 000 useful SNPs). Hence, the development of a much larger genotyping array of informative SNPs is feasible. SNPs identified in this study to cause non-synonymous amino acid substitutions can also be utilized to directly identify causal genes in association studies.

Highlights

  • Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation

  • The objective of the present study was to develop a set of genome-wide and evenly spaced SNPs through genome re-sequencing of ten B. napus varieties, and to validate the use of these SNPs on high-throughput genotyping platforms

  • SNPs were extracted from Short Oligonucleotide Alignment Program 2 (SOAP2) alignments after a filtering scheme that (i) excluded 521 million reads with redundant hits to the reference genomes, retaining 585 million reads uniquely matched to the reference sequences; (ii) excluded 78 million SNPs supported by less than four reads in each line; (iii) excluded 6,331,887 SNPs that were heterozygous in at least in one individual and (iv) excluded 7,224,690 SNPs with a minor allele frequency more than 0.2

Read more

Summary

Introduction

Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation. Identification of large numbers of SNPs is helpful for genetic diversity analysis, map-based cloning, genome-wide association analyses and marker-assisted breeding. Many SNPs in B. napus have been released, the objective in the present study was to produce a larger, more informative set of SNPs for large-scale and efficient genotypic screening. Many crop species are polyploid, including Brassica napus (rapeseed, canola), Triticum aestivum (wheat), Solanum tuberosum (potato), Gossypium hirsutum (cotton), Avena sativa (oat) and Saccharum officinarum (sugarcane). SNPs (single-nucleotide polymorphisms) are singlenucleotide substitutions of one base for another in DNA sequences. SNP markers have been applied in studies of genetic variation, construction of genetic maps, population structure analysis, association genetics, map-based gene isolation, and other plant breeding applications [8]. Mass SNP information has already been successfully used for genome-wide association studies [9,19,20,21], and SNP markers are increasingly becoming the optimal marker system

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call