Abstract
Thromboxane synthase (CYP5A1) catalyzes the conversion of prostaglandin H2 to thromboxane A2, a potent mediator of platelet aggregation, vasoconstriction and bronchoconstriction. It has been implicated in the patho-physiological process of a variety of diseases, such as atherosclerosis, myocardial infarction, stroke and asthma. On the basis of the hypothesis that variations of the CYP5A1 gene may play an important role in human diseases, we performed a screening for variations in the human CYP5A1 gene sequence. We examined genomic DNA from 200 individuals, for mutations in the promoter region, the protein encoding sequences and the 3'-untranslated region of the CYP5A1. Eleven polymorphisms have been identified in the CYP5A1 gene including eight missense mutations R61H, D161E, N246S, L357V, Q417E, E450K, T451N and R466Q. This is the first report of genetic variants in the human CYP5A1 altering the protein sequence. The effect of these variants on the metabolic activity of CYP5A1 remains to be further evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.