Abstract
DNA methylation plays an important role in regulating cell growth and disease development. Methylation profiles are examined by bisulfite conversion; however, the lack of markers for bisulfite conversion efficiency and appropriate internal control genes remains a major challenge. To address these issues, we utilized two bioinformatics approaches, coefficients of variances and resampling tests, to identify probes showing stable methylation levels from several independent microarray datasets. Mass spectrometry validated the consistently high methylation levels of the five probes (N4BP2, EGFL8, CTRB1, TSPAN3, and ZNF690) in 13 human tissue types from 24 cell lines. Linear associations between detected methylation levels and methyl concentrations of DNA samples were further demonstrated in three genes (N4BP2, EGFL8, and CTRB1). To summarize, we identified five genes which may serve as internal controls for methylation studies by analyzing large-scale microarray data, and three of them can be used as markers for evaluating the efficiency of bisulfite conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.