Abstract

The aim of this study was to identify genes with clinical significance in colorectal cancer (CRC). Gene expression profiles of 585 CRC tissues and 61 normal colorectal tissues from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to identify differentially expressed genes (DEGs) between CRC and normal colorectal tissues. DAVID and KOBAS tools were used to explore Gene Ontology (GO) and KEGG pathways enriched by DEGs, respectively. In addition, TCGA data sets were also used to identify prognostic factors and develop a prognostic prediction model for CRC. A total of 353 DEGs including 117 upregulated and 236 downregulated genes in CRC were identified based on GSE32323 data set. These DEGs were significantly enriched in the biological process related to the regulation of cell proliferation and 50 signaling pathways, such as "TGF-beta signaling pathway," "Wnt signaling pathway," and "Jak-STAT signaling pathway." GCG, ADH1B, SLC4A4, ZG16, and CLCA4 were the top five downregulated in CRC. FOXQ1, LGR5, CLDN1, KRT23, and DPEP1 were the top five upregulated in CRC. KRT23 expression could affect tumor stage and regional lymph node metastasis in CRC patients. FOXQ1 expression could affect tumor distant metastasis in CRC patients. Survival analysis indicated that SLC4A4 expression was associated with the prognosis of CRC patients. Prognostic prediction model developed based on age, tumor stage, and SLC4A4 expression exhibited an efficient performance in predicting 1-, 3-, and 5-year overall survival of CRC patients. In conclusion, the current study identified several genes and pathways related to CRC, which provided new insight in understanding molecular mechanism of tumorigenesis and development of CRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call