Abstract

BackgroundHazel (Corylus spp.) exhibits ovary differentiation and development that is initiated from the ovary primordium after pollination, conferring the plant with a unique delayed fertilization. Failure of development of the ovary and ovule after pollination can lead to ovary abortion and blank fruit formation, respectively, with consequent yield loss. However, the genes involved in ovary and ovule differentiation and development are largely unknown.ResultsIn unpollinated pistillate inflorescences (stage F), the stigma shows an extension growth pattern. After pollination, a rudimentary ovary begins to form (stage S), followed by ovule differentiation (stage T) and growth (stage FO). Total RNA was obtained from pistillate inflorescences or young ovaries at stage F, S, T and FO, and sequencing was carried out on a HiSeq 4000 system. De novo assembly of sequencing data yielded 62.58 Gb of nucleotides and 90,726 unigenes; 5524, 3468, and 8714 differentially expressed transcripts were identified in F-vs-S, S-vs-T, and T-vs-FO paired comparisons, respectively. An analysis of F-vs-S, S-vs-T, and T-vs-FO paired comparisons based on annotations in the Kyoto Encyclopedia of Genes and Genomes revealed six pathways that were significantly enriched during ovary differentiation, including ko04075 (Plant hormone signal transduction). Auxin level increased after pollination, and an immunohistochemical analysis indicated that auxin was enriched at the growth center of pistillate inflorescences and young ovaries. These results indicate that genes related to auxin biosynthesis, transport, signaling, the floral quartet model, and flower development may regulate ovary and ovule differentiation and development in hazel.ConclusionsOur findings provide insight into the molecular mechanisms of ovary differentiation and development after pollination in this economically valuable plant.

Highlights

  • Hazel (Corylus spp.) exhibits ovary differentiation and development that is initiated from the ovary primordium after pollination, conferring the plant with a unique delayed fertilization

  • Six significantly enriched pathways were common to the three paired comparisons (Fig. 4), including ko00940 (Phenylpropanoid biosynthesis), ko01110 (Biosynthesis of secondary metabolites), ko00941 (Flavonoid biosynthesis), ko00945 (Stilbenoid, diarylheptanoid, and gingerol biosynthesis), ko04075 (Plant hormone signal transduction), and ko00073 (Cutin, suberine, and wax biosynthesis), which are involved in the regulation of metabolism and signal transduction. These results indicate that differentially expressed genes (DEGs) involved in biosynthesis, metabolism, and signal transduction are important for the regulation of ovary differentiation and development in hazel

  • We identified a set of genes that may regulate stigma growth, primordial ovary formation, ovule differentiation and ovule growth in hazel

Read more

Summary

Introduction

Hazel (Corylus spp.) exhibits ovary differentiation and development that is initiated from the ovary primordium after pollination, conferring the plant with a unique delayed fertilization. Failure of development of the ovary and ovule after pollination can lead to ovary abortion and blank fruit formation, respectively, with consequent yield loss. Stigma growth, pollination, fertilization, and subsequent ovary and ovule development in pistillate inflorescences are the requirements for fruit formation, which determines plant yield. Compared to Arabidopsis, hazel has distinct pistillate inflorescences and a different mode of fruit development: at anthesis of pistillate inflorescences, the gynoecium is still immature due to the absence of a complete ovary and ovule, and the stigma and style form a complex [4]; at the bottom of this

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.