Abstract

We used differential display of mRNA, a method based on reverse transcriptase-PCR, to identify genes whose expression increases in response to acoustic trauma in the chick basilar papilla. Identifying these genes would provide insight into processes involved in repair of the damaged epithelium or in hair cell regeneration. We compared mRNA from the basilar papilla of normal chicks, from chicks exposed to an octave band noise (center frequency: 1.5 kHz) presented at 118 dB for 6 h, and from chicks exposed to noise and allowed to recover for 2 days. Thus far, we have identified 70 bands that appear to be differentially displayed on DNA sequencing gels; approximately 40 of these bands have been subcloned and sequenced. DNA sequences were compared with sequences in the GenBank database to identify genes with significant (70–85%) sequence identity to known genes. Chick cDNAs identified included: the parathyroid hormone-related protein, an immediate early gene; the δ-subunit of the neuronal-specific Ca 2+/calmodulin-regulated protein kinase II; and the GTP-binding protein CDC42, a member of the ras superfamily of G proteins. A fourth cDNA had 84% sequence identity to an uncharacterized human cDNA (expressed sequence tag), indicating that this is a novel gene. Slot-blot hybridization analysis of these cDNAs probed with labeled DNA generated from mRNA from each experimental group indicated higher levels of mRNA for each of these four genes after noise exposure. These results indicate the potential involvement of both Ca 2+/calmodulin-mediated signaling and GTPase cascades in the response to noise damage and during hair cell regeneration in the chick basilar papilla.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.