Abstract

Sclerotium rolfsii, a destructive soil-borne fungal pathogen causes stem rot of the cultivated peanut, Arachis hypogaea. This study aimed to identify differentially expressed genes associated with peanut resistance and fungal virulence. Four peanut cultivars (A100-32, Georgia Green, GA-07W and York) with increasing resistance levels were inoculated with a virulent S. rolfsii strain to study the early plant–pathogen interaction. 454 sequencing was performed on RNAs from infected tissue collected at 4 days post inoculation, generating 225,793 high-quality reads. Normalized read counts and fold changes were calculated and statistical analysis used to identify differentially expressed genes. Several genes identified as differential in the RNA-seq experiment were selected based on functions of interest and real-time PCR employed to corroborate their differential expression. Expanding the analysis to include all four cultivars revealed a small but interesting set of genes showing colinearity between cultivar resistance and expression levels. This study identified a set of genes possibly related to pathogen response that may be useful marker assisted selection or transgenic disease control strategies. Additionally, a set of differentially expressed genes that have not been functionally characterized in peanut or other plants and warrant additional investigation were identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.