Abstract

To better understand the molecular and physiological mechanisms underlying maintenance and release of seasonal bud dormancy in perennial trees, we identified differentially expressed genes during dormancy progression in reproductive buds from peach (Prunus persica [L.] Batsch) by suppression subtractive hybridization (SSH) and microarray hybridization. Four SSH libraries were constructed, which were respectively enriched in cDNA highly expressed in dormant buds (named DR), in dormancy-released buds (RD) and in the cultivars with different chilling requirement, 'Zincal 5' (ZS) and 'Springlady' (SZ), sampled after dormancy release. About 2500 clones picked from the four libraries were loaded on a glass microarray. Hybridization of microarrays with the final products of SSH procedure was performed in order to validate the selected clones that were effectively enriched in their respective sample. Nearly 400 positive clones were sequenced, which corresponded to 101 different unigenes with diverse functional annotation. We obtained DAM4, 5 and 6 genes coding for MADS-box transcription factors previously related to growth cessation and terminal bud formation in the evergrowing mutant of peach. Several other cDNAs are similar to dormancy factors described in other species, and others have been related to bud dormancy for the first time in this study. Quantitative reverse transcription polymerase chain reaction analysis confirmed differential expression of cDNAs coding for a Zn-finger transcription factor, a GRAS-like regulator, a DNA-binding protein and proteins similar to forisome subunits involved in the reversible occlusion of sieve elements in Fabaceae, among others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call