Abstract

Prolonged glucocorticoids (GCs) treatment may lead to the formation of posterior subcapsular cataracts. The present study aimed to investigate differential gene expression in lens epithelial cells (LECs) in response to GCs using DNA microarray profiling. The gene expression profile of GSE13040 was downloaded from the Gene Expression Omnibus database, which includes 12 human LECs treated with vehicle or dexamethasone (Dex) for 4 or 16 h with six samples at each time period, of which three samples were treated with vehicle (control group) and three samples were treated with Dex (Dex group) at each time point. The differentially expressed genes (DEGs) were identified between the control group and the Dex group at each time period with the thresholds of P<0.05 and |logFC|>1. The DEGs were further analyzed using bioinformatics methods. Firstly, DEGs were subject to a hierarchical cluster analysis. Subsequently, the functional enrichment analysis was performed for the common DEGs between the two time periods. Finally, the transcription factors and binding sites of DEGs associated with response to GC stimulus were analyzed. A total of 696 and 949 DEGs were identified at 4 h and 16 h, respectively. Hierarchical cluster analysis revealed that DEG expression was higher in the Dex group than in the control group (P<0.05). A total of 13 significant functions were enriched for the 72 common DEGs at the two time periods. Chemokine (C-C motif) ligand 2 (CCL2), dual-specificity phosphatase-1 (DUSP1) and FAS were associated with the response to GC stimulus and the transcription factor c-Jun bound to promoter regulation regions of CCL2, DUSP1 and FAS. In conclusion, the transcription factors and binding sites of DEGs associated with the response of LECs to GCs may provide potential gene targets for designing and developing drugs to protect against GC-induced cataract formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.