Abstract
BackgroundPolysaccharides often are necessary components of bacterial biofilms and capsules. Production of these biopolymers constitutes a drain on key components in the central carbon metabolism, but so far little is known concerning if and how the cells divide their resources between cell growth and production of exopolysaccharides. Alginate is an industrially important linear polysaccharide synthesized from fructose 6-phosphate by several bacterial species. The aim of this study was to identify genes that are necessary for obtaining a normal level of alginate production in alginate-producing Pseudomonas fluorescens.ResultsPolysaccharide biosynthesis is costly, since it utilizes nucleotide sugars and sequesters carbon. Consequently, transcription of the genes necessary for polysaccharide biosynthesis is usually tightly regulated. In this study we used an engineered P. fluorescens SBW25 derivative where all genes encoding the proteins needed for biosynthesis of alginate from fructose 6-phosphate and export of the polymer are expressed from inducible Pm promoters. In this way we would avoid identification of genes merely involved in regulating the expression of the alginate biosynthetic genes. The engineered strain was subjected to random transposon mutagenesis and a library of about 11500 mutants was screened for strains with altered alginate production. Identified inactivated genes were mainly found to encode proteins involved in metabolic pathways related to uptake and utilization of carbon, nitrogen and phosphor sources, biosynthesis of purine and tryptophan and peptidoglycan recycling.ConclusionsThe majority of the identified mutants resulted in diminished alginate biosynthesis while cell yield in most cases were less affected. In some cases, however, a higher final cell yield were measured. The data indicate that when the supplies of fructose 6-phosphate or GTP are diminished, less alginate is produced. This should be taken into account when bacterial strains are designed for industrial polysaccharide production.
Highlights
Polysaccharides often are necessary components of bacterial biofilms and capsules
Linear polysaccharides composed of mannuronic and guluronic acid residues that may be O-acetylated, are denoted alginate. These polymers are synthesized by brown and some red algae and by bacterial species belonging to the genera Azotobacter and Pseudomonas
Construction of a P. fluorescens strain in which the alginate biosynthesis genes are controlled by the inducible Pm promoter In order to avoid re-identification of the genes already known to directly regulate expression of the structural a b
Summary
Polysaccharides often are necessary components of bacterial biofilms and capsules. Production of these biopolymers constitutes a drain on key components in the central carbon metabolism, but so far little is known concerning if and how the cells divide their resources between cell growth and production of exopolysaccharides. The aim of this study was to identify genes that are necessary for obtaining a normal level of alginate production in alginate-producing Pseudomonas fluorescens. Linear polysaccharides composed of mannuronic and guluronic acid residues that may be O-acetylated, are denoted alginate. These polymers are synthesized by brown and some red algae and by bacterial species belonging to the genera Azotobacter and Pseudomonas. Bacterial alginate production is controlled by the alternative sigma factor AlgU and is usually turned off in Pseudomonas spp. Induction of alginate biosynthesis results in a proteolytic cascade that cleaves the AlgU anti-sigma factor MucA, leading to transcription of the genes in the alg operon [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.