Abstract

Single-cell RNAseq is an emerging technology that allows the quantification of gene expression in individual cells. In plants, single-cell sequencing technology has been applied to generate root cell expression maps under many experimental conditions. DAP-seq and ATAC-seq have also been used to generate genome-scale maps of protein-DNA interactions and open chromatin regions in plants. In this protocol, we describe a multistep computational pipeline for the integration of single-cell RNAseq data with DAP-seq and ATAC-seq data to predict regulatory networks and key regulatory genes. Our approach utilizes machine learning methods including feature selection and stability selection to identify candidate regulatory genes. The network generated by this pipeline can be used to provide a putative annotation of gene regulatory modules and to identify candidate transcription factors that could play a key role in specific cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.