Abstract

Multidrug resistance protein-1 (MDR1) has been proven to be associated with the development of chemoresistance to imatinib (Glivec, STI571) which displays high efficacy in treatment of BCR-ABL-positive chronic myelogenous leukemia (CML). However, the possible mechanisms of MDR1 modulation in the process of the resistance development remain to be defined. Herein, galectin-1 was identified as a candidate modulator of MDR1 by proteomic analysis of a model system of leukemia cell lines with a gradual increase of MDR1 expression and drug resistance. Coincidently, alteration of galectin-1 expression triggers the change of MDR1 expression as well as the resistance to the cytotoxic drugs, suggesting that augment of MDR1 expression engages in galectin-1-mediated chemoresistance. Moreover, we provided the first data showing that NF-κB translocation induced by P38 MAPK activation was responsible for the modulation effect of galectin-1 on MDR1 in the chronic myelogenous leukemia cells. Galectin-1 might be considered as a novel target for combined modality therapy for enhancing the efficacy of CML treatment with imatinib.

Highlights

  • Formation of the BCR-ABL fusion gene coding for a constitutively active BCR-ABL tyrosine kinase via t(9;22)(q34;q11) reciprocal translocation initiates 95% of chronic myelogenous leukemia (CML), and 25% of adults and 5% of children acute lymphoblastic leukemia (ALL) [1]

  • Quantitative PCR (q-PCR) analysis showed that the expression level of Multidrug resistance protein-1 (MDR1) in the revertant K562/ ADM cells is less than the resistant K562/ADM cells, but higher than the sensitive ones, suggesting that the expression level of MDR1 gradually decreases during the course of cultivation in the absence of adriamycin (Figure 1)

  • The results imply that a gradual increase of resistance against adriamycin and imatinib is accompanied by a gradual increase of MDR1 level during the course of development of drug resistance in K562 cells exposed to adriamycin

Read more

Summary

Introduction

Formation of the BCR-ABL fusion gene coding for a constitutively active BCR-ABL tyrosine kinase via t(9;22)(q34;q11) reciprocal translocation initiates 95% of chronic myelogenous leukemia (CML), and 25% of adults and 5% of children acute lymphoblastic leukemia (ALL) [1]. The occurrence of drug resistance was reported in CML patients with advanced stages treated with imatinib [3]. Amplification of the BCR-ABL gene and mutations of the kinase domain of ABL have been described as the molecular mechanisms for the development of imatinib resistance [4,5,6,7,8,9]. Overexpression or mutations of BCR-ABL could not explain all drug resistance to imatinib in CML patients, implying that the alternative mechanisms may exist [10,11,12]. We first applied proteomic approach to identify galectin-1 as a candidate of MDR1 modulators for mediating drug resistance in CML cells by comparison of the protein profiles among a model system of leukemia cell lines with a gradual increase of MDR1 expression and www.impactjournals.com/oncotarget drug resistance, and further explored the mechanisms of galectin-1 acting as a novel MDR1 modulator contributing to functional resistance against the cytotoxic drugs

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.