Abstract

Regulatory regions in the human genome, enriched in guanine-rich DNA sequences have a remarkable enrichment of G-rich sequences having a tendency to fold into G-quadruplex structures. To identify the G-quadruplex forming motifs in regulatory regions of stem cell markers, gene sequences of various stem cell markers were downloaded and analyzed to see the abundance of G-rich sequences. We observed the enrichment of G-rich sequences in stem cell markers (CD13, CD19, CD24 and CD38) which could possibly play a critical role in its regulation. We used Circular Dichroism (CD), UV-Thermal denaturation (UV-T m) and polyacrylamide gel electrophoresis (PAGE) to demonstrate the formation of a G-quadruplex by G-rich sequences present in these stem cell markers. We observed that these G-rich sequences containing minimum consecutive G3 stretch separated by loop length ranging from one to three bases long adopt G-quadruplexes with different molecularity involving two-strands, three-strand and four-strand with parallel and antiparallel conformation. Interestingly, we proposed the formation of three-stranded G-quadruplex by CD13 in 100 mM Na+, CD19 in 100 mM K+, 100 mM K+ with 40 wt% PEG 200, and CD38 in 100 mM K+ + 40 wt% PEG 200. The formation of such diverse G-quadruplex structures in the regulatory regions leaves the fair possibility of recognition by regulatory factors to modulate the gene expression. First time, this study may give insight into the structural polymorphism of G4 forming motifs in different stem cell markers to design the best suitable ligand and to target them for therapeutic development. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call