Abstract

Soybean is one of the most important crops grown across the globe. In the United States, approximately 15% of the soybean yield is suppressed due to various pathogen and pests attack. Sudden death syndrome (SDS) is an emerging fungal disease caused by Fusarium virguliforme. Although growing SDS resistant soybean cultivars has been the main method of controlling this disease, SDS resistance is partial and controlled by a large number of quantitative trait loci (QTL). A proteinacious toxin, FvTox1, produced by the pathogen, causes foliar SDS. Earlier, we demonstrated that expression of an anti-FvTox1 single chain variable fragment antibody resulted in reduced foliar SDS development in transgenic soybean plants. Here, we investigated if synthetic FvTox1-interacting peptides, displayed on M13 phage particles, can be identified for enhancing foliar SDS resistance in soybean. We screened three phage-display peptide libraries and discovered four classes of M13 phage clones displaying FvTox1-interacting peptides. In vitro pull-down assays and in vivo interaction assays in yeast were conducted to confirm the interaction of FvTox1 with these four synthetic peptides and their fusion-combinations. One of these peptides was able to partially neutralize the toxic effect of FvTox1 in vitro. Possible application of the synthetic peptides in engineering SDS resistance soybean cultivars is discussed.

Highlights

  • Sudden death syndrome (SDS) is an emerging disease caused by the fungal pathogen, Fusarium virguliforme

  • Three M13 phage display peptide libraries were mixed in equal proportions for panning using FvTox1, immobilized on 12-well microtiter plate surface (Fig 1A)

  • There is no suitable soybean cultivar that is completely resistant to SDS

Read more

Summary

Introduction

Sudden death syndrome (SDS) is an emerging disease caused by the fungal pathogen, Fusarium virguliforme. Between 1999 and 2004, the average annual yield suppression due to SDS was estimated to be $190 million [1]. The disease was first recorded in Arkansas in 1971 [2]. The pathogen has been detected in all soybean-growing states of North America [3]. The disease has two components: (i) foliar SDS and (ii) root necrosis. Major crop losses occur from the foliar SDS. F. virguliforme is a soil borne pathogen. It over-winters in crop residues or soil in the form of chlamydospores that initiate root-infection in subsequent years. The pathogen has PLOS ONE | DOI:10.1371/journal.pone.0145156. The pathogen has PLOS ONE | DOI:10.1371/journal.pone.0145156 December 28, 2015

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.