Abstract

Hornet silk, a fibrous protein in the cocoon produced by the larva of the vespa, is composed of four major proteins. In this study, we constructed silk-gland cDNA libraries from larvae of the hornet Vespa simillima xanthoptera Cameron and deduced the full amino acid sequences of the four hornet silk proteins, which were named Vssilk 1-4 in increasing order of molecular size. Portions of the amino acid sequences of the four proteins were confirmed by Matrix-assisted laser desorption/ionization-time of flight/mass spectrometry (MALDI-TOF/MS) and N-terminal protein sequencing. The primary sequences of the four Vssilk proteins (1-4) were highly divergent, but the four proteins had some common properties: (i) the amino acid compositions of all four proteins were similar to each other in that the well-defined and characteristic repetitive patterns present in most of the known silk proteins were absent; and (ii) the characteristics of the amino acid sequences of the four proteins were also similar in that Ser-rich structures such as sericin were localized at both ends of the chains and Ala-rich structures such as fibroin were found in the center. These characteristic primary structures might be responsible for the coexisting alpha-helix and beta-sheet conformations that make up the unique secondary structure of hornet silk proteins in the native state. Because heptad repeat sequences of hydrophobic residue are present in the Ala-rich region, we believe that the Ala-rich region of hornet silk predominantly forms a coiled coil with an alpha-helix conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.