Abstract

The damping capability of squeeze film dampers (SFDs) relies on adequate end sealing to prevent air ingestion and entrapment. The paper presents the parameter identification procedure and force coefficients of a test SFD featuring a mechanical seal that effectively eliminates lubricant side leakage. The test damper reproduces an aircraft application intended to contain the lubricant in the film lands for extended periods of time. The test damper journal is 2.54cm in length and 12.7cm in diameter, with a nominal clearance of 0.127mm. The SFD feed end is flooded with oil, while the discharge end contains a recirculation groove and four orifice ports. In a companion paper (San Andrés and Delgado, 2006, ASME J. Eng. Gas Turbines Power, 119, to be published) single frequency–unidirectional load excitation tests were conducted, without and with lubricant in the squeeze film lands, to determine the seal dry-friction force and viscous damping force coefficients. Presently, tests with single frequency excitation loads rendering circular centered orbits excitations are conducted to identify the SFD force coefficients. The identified parameters include the overall system damping and the individual contributions from the squeeze film, dry friction and structural damping. The identified system damping coefficients are frequency and motion amplitude dependent due to the dry friction interaction at the mechanical seal interface. Identified squeeze film force coefficients, damping, and added mass, are in good agreement with predictions based on the full film, short length damper model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.