Abstract

Flavone glucuronide isomers of five flavones (chrysin, apigenin, luteolin, baicalein, and scutellarein) were differentiated by collision-induced dissociation of [Co(II) (flavone-H) (4,7-diphenyl-1,10-phenanthroline)(2)](+) complexes. The complexes were generated via postcolumn addition of a metal-ligand solution after separation of the glucuronide products generated upon incubation of each flavone with an array of uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) isozymes. Elucidation of the glucuronide isomers allowed a systematic investigation of the regioselectivity of 12 human UGT isozymes, including 8 UGT1A and 4 UGT2B isozymes. Glucuronidation of the 7-OH position was the preferred site for all the flavones except for luteolin, which possessed adjacent hydroxyl groups on the B ring. For all flavones and UGT isozymes, glucuronidation of the 5-OH position was never observed. As confirmed by the metal complexation/MS/MS strategy, glucuronidation of the 6-OH position only occurred for baicalein and scutellarein when incubated with three of the UGT isozymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.