Abstract

The identification of finite dimensional discrete-time models of deterministic linear and nonlinear infinite dimensional systems from pointwise observations is investigated. The input and output observations are used to construct finite dimensional approximations of the solution and the forcing function which are expanded in terms of a finite element basis. An algorithm to determine a minimal basis to approximate the data is introduced. Subsequently, the resulting coordinate vectors are used to identify a finite dimensional discrete-time model. Theoretical results concerning the existence, stability and convergence of the finite dimensional representation are established. Numerical results involving identification of finite dimensional models for both linear and nonlinear infinite dimensional systems are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.