Abstract

Botulinum neurotoxin serotype A (BoNT/A) causes transient muscle paralysis by entering motor nerve terminals (MNTs) where it cleaves the SNARE protein Synaptosomal-associated protein 25 (SNAP25206) to yield SNAP25197. Cleavage of SNAP25 results in blockage of synaptic vesicle fusion and inhibition of the release of acetylcholine. The specific uptake of BoNT/A into pre-synaptic nerve terminals is a tightly controlled multistep process, involving a combination of high and low affinity receptors. Interestingly, the C-terminal binding domain region of BoNT/A, HC/A, is homologous to fibroblast growth factors (FGFs), making it a possible ligand for Fibroblast Growth Factor Receptors (FGFRs). Here we present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3) as a high affinity receptor for BoNT/A in neuronal cells. HC/A binds with high affinity to the two extra-cellular loops of FGFR3 and acts similar to an agonist ligand for FGFR3, resulting in phosphorylation of the receptor. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete for binding to FGFR3 and block BoNT/A cellular uptake. These findings show that FGFR3 plays a pivotal role in the specific uptake of BoNT/A across the cell membrane being part of a larger receptor complex involving ganglioside- and protein-protein interactions.

Highlights

  • Botulinum neurotoxin serotype A (BoNT/A) is produced by Clostridium botulinum and is a member of the Clostridial neurotoxin family that includes BoNT/A-G and Tetanus neurotoxin (TeNT)

  • We present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3) as a high affinity receptor for BoNT/A

  • We show that BoNT/A binds to FGFR3 with high affinity and functions as an agonist ligand for FGFR3

Read more

Summary

Introduction

Botulinum neurotoxin serotype A (BoNT/A) is produced by Clostridium botulinum and is a member of the Clostridial neurotoxin family that includes BoNT/A-G and Tetanus neurotoxin (TeNT). BoNT/A causes transient muscle paralysis by entering motor nerve terminals (MNTs) where it cleaves nine amino acids from the C-terminus of the soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein SNAP25 (SNAP25206) to yield SNAP25197 [1]. Because of its high potency and specificity for pre-synaptic nerve terminals, BoNT/A at picomolar concentrations, is used to treat a wide range of neuromuscular disorders [6,7,8], pain disorders including migraine [9], and excessive sweating [10]. The key to the exceptional specificity of BoNT/A is believed to be the mechanism of uptake across the presynaptic membrane of neurons that involves a combination of low and high affinity interactions known as the double receptor model [11,12,13]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.