Abstract

Regulators of skeletal muscle mass are of interest, given the morbidity and mortality of muscle atrophy and myopathy. Four-and-a-half LIM protein 1 (FHL1) is mutated in several human myopathies, including reducing-body myopathy (RBM). The normal function of FHL1 in muscle and how it causes myopathy remains unknown. We find that FHL1 transgenic expression in mouse skeletal muscle promotes hypertrophy and an oxidative fiber-type switch, leading to increased whole-body strength and fatigue resistance. Additionally, FHL1 overexpression enhances myoblast fusion, resulting in hypertrophic myotubes in C2C12 cells, (a phenotype rescued by calcineurin inhibition). In FHL1-RBM C2C12 cells, there are no hypertrophic myotubes. FHL1 binds with the calcineurin-regulated transcription factor NFATc1 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1), enhancing NFATc1 transcriptional activity. Mutant RBM-FHL1 forms aggregate bodies in C2C12 cells, sequestering NFATc1 and resulting in reduced NFAT nuclear translocation and transcriptional activity. NFATc1 also colocalizes with mutant FHL1 to reducing bodies in RBM-afflicted skeletal muscle. Therefore, via NFATc1 signaling regulation, FHL1 appears to modulate muscle mass and strength enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.