Abstract
The receptor-like kinase (RLK) FERONIA functions in immunity in Arabidopsis. Here, we systemically screened rice RLK genes encoding FERONIA-like receptor (FLRs) that may be involved in rice-Magnaporthe oryzae interaction. The expression of 16 FLR genes was examined in response to the infection of M. oryzae in different rice varieties. For each FLR gene, at least two independent mutants were generated by CRISPR/Cas9 gene-editing technology in rice variety Zhonghua 11 (ZH11). Blast disease assay identified that the mutants of FLR1 and FLR13 showed increased susceptibility, whereas the mutants of FLR2 and FLR11 displayed enhanced resistance. Consistently, the mutant of FLR1 enhanced, but the mutant of FLR2 delayed the M. oryzae infection progress, which might be associated with the altered expression of defense-related genes. Together, these data indicate that at least 4 FLR genes are involved in rice-M. oryzae interaction and thus are potentially valuable in blast disease resistance.
Highlights
receptor-like kinase (RLK) proteins play vital roles in various biological processes including plant-microbe interactions
FLR1/ DWARF AND RUNTISH SPIKELET1 (DRUS1) (DWARF AND RUNTISH SPIKELET 1) and FLR2/ DRUS2 are the closest orthologs to the Arabidopsis FER, whereas FLR6 is close to ANX1 and ANX2 (Additional file 1: Figure S1)
To identify which of these 16 FERONIA-like receptor (FLR) protein-encoding genes are involved in rice-M. oryzae interaction, we first analyzed their expressions using RNA-seq data, which were derived from the leaves of a susceptible accession Lijiangxin Tuan Heigu (LTH) and four resistant accessions, including IRBLz5-CA, IRBL9-W, IRBLkm-Ts and YH2115 before and after inoculation with the M. oryzae strain Guy11
Summary
RLK proteins play vital roles in various biological processes including plant-microbe interactions. When a pathogenic microbe colonizes on the plant surface, the cell membrane-localized RLKs are employed to recognize the cognate pathogen-associated molecular pattern (PAMP) via their extracellular domains to activate an innate immunity, termed PAMP-triggered immunity (PTI). PROTEIN (CEBiP) sense the fungal PAMP molecule chitin (Shimizu et al 2010; Liu et al 2012). This cognition activates the kinase activity of RLK to transduce the immune signal from the apoplast to the cytoplasm and the nucleus for initiating immune responses, such as the induction of defense-related genes, the activation of mitogen-associated protein kinase (MAPK), H2O2 accumulation, and callose deposition (Bigeard et al 2015). Plants employ resistance (R) proteins to recognize cognate effectors in classic gene-for-gene manner, leading to effector-triggered immunity (ETI)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.