Abstract

Histone modifications are fundamental to chromatin structure and transcriptional regulation, and are recognized by a limited number of protein folds. Among these folds are PHD fingers, which are present in most chromatin modification complexes. To date, about 15 PHD finger domains have been structurally characterized, whereas hundreds of different sequences have been identified. Consequently, an important open problem is to predict structural features of a PHD finger knowing only its sequence. Here, we classify PHD fingers into different groups based on the analysis of residue–residue co-evolution in their sequences. We measure the degree to which fixing the amino acid type at one position modifies the frequencies of amino acids at other positions. We then detect those position/amino acid combinations, or ‘conditions’, which have the strongest impact on other sequence positions. Clustering these strong conditions yields four families, providing informative labels for PHD finger sequences. Existing experimental results, as well as docking calculations performed here, reveal that these families indeed show discrepancies at the functional level. Our method should facilitate the functional characterization of new PHD fingers, as well as other protein families, solely based on sequence information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.