Abstract

Both outer hair cells (OHCs) and inner hair cells (IHCs) survive and mature in 3 days old rat organ of Corti explants cultured for 1 month in a minimal essential medium. In contrast, under the same culture conditions, only IHCs survive in explants from adult guinea pig organ of Corti while many of the OHCs are lost within the first 48 h. Hair cell counts show OHCs loss to be greater in the lower portion (i.e. middle turn) of the cochlea than at the apex. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) indicates that there is DNA damage in adult OHCs within 8 h of explantation. Treatment of the adult organ of Corti explants with either actinomycin D (10 −7 M) or cycloheximide (10 −6 M) prevents most OHC losses. According to these results apoptosis may be the mechanism of OHC loss in adult organ of Corti explants. Stable membrane potentials recorded from the OHCs in both uncultured and actinomycin D-treated organ of Corti explants cultured for 72 h demonstrate the functional integrity of these hair cells. OHC losses in the adult guinea pig organ of Corti cultures can also be prevented by treatment with several of the growth factors tested, i.e. acidic fibroblast growth factor (aFGF), insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), transforming growth factor-β1 (TGF-β1), and glial cell-derived neurotrophic factor (GDNF). The results of this study suggest that growth factor therapy may be applicable to the treatment of some hearing disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.