Abstract

BackgroundAt least 90% of human genes are alternatively spliced. Alternative splicing has an important function regulating gene expression and miss-splicing can contribute to risk for human diseases, including Alzheimer’s disease (AD).MethodsWe developed a splicing decision model as a molecular mechanism to identify functional exon skipping events and genetic variation affecting alternative splicing on a genome-wide scale by integrating genomics, transcriptomics, and neuroimaging data in a systems biology approach. In this study, we analyzed RNA-Seq data of hippocampus brain tissue from Alzheimer’s disease (AD; n = 24) and cognitively normal elderly controls (CN; n = 50) and identified three exon skipping events in two genes (RELN and NOS1) as significantly associated with AD (corrected p-value < 0.05 and fold change > 1.5). Next, we identified single-nucleotide polymorphisms (SNPs) affecting exon skipping events using the splicing decision model and then performed an association analysis of SNPs potentially affecting three exon skipping events with a global cortical measure of amyloid-β deposition measured by [18F] Florbetapir position emission tomography (PET) scan as an AD-related quantitative phenotype. A whole-brain voxel-based analysis was also performed.ResultsTwo exons in RELN and one exon in NOS1 showed significantly lower expression levels in the AD participants compared to CN participants, suggesting that the exons tend to be skipped more in AD. We also showed the loss of the core protein structure due to the skipped exons using the protein 3D structure analysis. The targeted SNP-based association analysis identified one intronic SNP (rs362771) adjacent to the skipped exon 24 in RELN as significantly associated with cortical amyloid-β levels (corrected p-value < 0.05). This SNP is within the splicing regulatory element, i.e., intronic splicing enhancer. The minor allele of rs362771 conferred decreases in cortical amyloid-β levels in the right temporal and bilateral parietal lobes.ConclusionsOur results suggest that exon skipping events and splicing-affecting SNPs in the human hippocampus may contribute to AD pathogenesis. Integration of multiple omics and neuroimaging data provides insights into possible mechanisms underlying AD pathophysiology through exon skipping and may help identify novel therapeutic targets.

Highlights

  • At least 90% of human genes are alternatively spliced

  • Our results suggest that exon skipping events and splicing-affecting Single nucleotide polymorphism (SNP) in the human hippocampus may contribute to Alzheimer’s disease (AD) pathogenesis

  • Identification of SNPs in splicing regulatory elements associated with exon skipping events We have developed a splicing decision model for identifying SNPs affecting splicing regulatory elements (SREs) with exon skipping by using alignment information for four alternative splicing datasets from the UCSC genome browser: mRNAs from GenBank [32], Ensembl Gene Predictions [33], AceView Gene Models [34], and UCSC known genes [35] and a set of predicted hexameric Splicing regulatory element (SRE) motifs, as described in detail in previous publications [26, 27]

Read more

Summary

Introduction

Alternative splicing has an important function regulating gene expression and miss-splicing can contribute to risk for human diseases, including Alzheimer’s disease (AD). Previous whole transcriptome sequencing analyses revealed gene expression and alternative splicing changes in the AD-affected brain regions [4, 10,11,12]. Several alternatively spliced AD candidate genes such as CLU and CD33 were reported to be associated with AD pathogenesis [13, 14]. It could provide valuable information on the underlying pathology associated with the AD to identify other alternative spliced genes and AD-associated single-nucleotide polymorphisms (SNPs) affecting splicing regulation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.