Abstract

Ethanol is an efficient disinfectant, but long-term and wide usage of ethanol leads to microbial tolerance. Bacteria with the tolerance are widely identified. However, mechanisms of the tolerance are not elucidated. To explore the mechanisms of outer membrane (OM) proteins underlying ethanol tolerance in bacteria, functional proteomic methodologies were utilized to characterize OM proteins of E. coli suddenly exposed to 3.125% ethanol. Of eleven proteins altered significantly, seven were OM proteins, in which LamB, FadL and OmpC were up-regulated, and OmpT, OmpF, Tsx and OmpA were down-regulated. The alterations were validated using Western blot. Then, functional characterization of the altered abundance of OM proteins was investigated in gene-deleted and gene-complemented mutants cultured in 1.56–6.25% ethanol. Higher inhibiting rate was detected in ΔompC than ΔlamB and ΔompA, but no difference was found between Δtsx, ΔompF, ΔfadL or ΔompT and control. Furthermore, EnvZ/OmpR two-component signal transduction system, which regulates OmpC and OmpF expression, was determined to participate in the tolerance. Finally, our results show that absence of envZ, ompR or ompC and ompA led to elevated and reduced intracellular ethanol, respectively. These findings indicate EnvZ-dependent phosphotransfer signaling pathway of the OmpR-mediated expression of OmpC plays a crucial role in ethanol tolerance. Biological significanceEthanol tolerance is an adaptation strategy of bacteria. In the present study, we used the proteomic approaches involving 2-DE and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) to determined outer membrane (OM) protein changes in E. coli K-12 after 2 h of 1/2 MIC of ethanol exposure. Under ethanol stress, seven differential OM proteins were found, which were validated by Western blot. Functions of these seven OM proteins were compared using their genetically modified strains. Furthermore, the role of EnvZ/OmpR two-component signal transduction system was identified in ethanol tolerance of E. coli. Finally, Loss of ompC, envZ or ompR increases intracellular ethanol, while absence of ompA reduces reversal effect. This is the first report of OM proteomics in E. coli exposed to ethanol. Our findings reveal an unknown OmpC-dependent mechanism of ethanol tolerance in a manner of EnvZ/OmpR regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call