Abstract

The activity of adenylyl cyclase (AC) is enhanced by pharmacologically relevant concentrations of ethanol. The enhancing effect of ethanol on AC activity is AC isoform-specific. Therefore, we hypothesized that within a cyclic AMP-generating system, AC is the target of ethanol's action and that ethanol-sensitive AC molecules contain structural elements modulated by ethanol. The structural elements are designated as "ethanol responsive domains." By using a series of chimeric mutants, we searched regions of the AC molecule that are important for the ethanol effect. These chimeric mutants were derived from 3 isoforms of AC: AC7 (type 7), the most ethanol responsive isoform; AC3 (type 3), an isoform that is far less responsive to ethanol; and AC2 (type 2), an isoform that is homologous to AC7 but less responsive to ethanol. We identified 2 discrete regions of the AC molecule that are important for the enhancement of AC activity by ethanol. The first is the N-terminal 28-amino-acid (aa) region of the C(1a) domain. The second is the C-terminal region ( approximately 140 aa) of the AC molecule. Sequence differences in the N-terminal tail, 2 putative transmembrane domains, and the C(1b) domain are not important for ethanol's effect. The current study with mammalian ACs provides a new class of alcohol-responsive protein and possibly a new mechanism of alcohol action on cellular function. The identification of ethanol responsive domains will facilitate the elucidation of the mechanisms by which ethanol enhances the activity of AC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call