Abstract

This paper proposed a hybrid approach for the identification of encrypted traffic based on advanced mathematical modeling and computational intelligence. Network traffic identification is the premise and foundation of improving network management, service quality, and application security. It is also the focus of network behavior analysis, network planning and construction, network anomaly detection, and network traffic model research. With the increase in user and service requirements, many applications use encryption algorithms to encrypt traffic during data transmission. As a result, traditional traffic classification methods classify encrypted traffic on the network, which brings great difficulties and challenges to network monitoring and data mining. In our article, a nonlinear modified DBN method is proposed and applied to encrypted traffic identification. Firstly, based on Deep Belief Networks (DBN), this paper introduces the proposed Eodified Elliott (ME)-DBN model, analyzes the function image, and presents the ME-DBN learning algorithm. Secondly, this article designs an encrypted traffic recognition model based on the ME-DBN model. Feature extraction is carried out by training the ME-DBN model, and finally, classification and recognition are carried out by the classifier. The experimental results on the ISCX VPN-non-VPN database show that the MEDBN method proposed in this article can enhance the classification and recognition rate and has better robustness to encrypt traffic recognition from different software.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call