Abstract

Larvae of the tapeworm Echinococcus multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. The germinative cells, a population of stem cell-like cells, are considered to drive the continuous growth of the metacestodes within the host. The mechanisms and relative molecules controlling the behavior of germinative cells are poorly understood. Sox transcription factors play important roles in maintenance and regulation of stem/progenitor cells. We here describe the identification of a Sox family member in E. multilocularis, EmSOX2, as a potential regulator of germinative cells. Replacement of mouse Sox2 with EmSox2 could derive induced pluripotent stem cells (iPSCs) from somatic cells, suggesting that EmSOX2 is functionally related to mammalian SOX2. EmSOX2 is actively expressed in the proliferating germinative cells in E. multilocularis, and is significantly downregulated upon specific depletion of the germinative cell population by hydroxyurea treatment. These findings suggest that EmSOX2 may play a critical role in regulating E. multilocularis germinative cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call