Abstract

This work establishes a method for the noninvasive in vivo identification of parametric models of electrically stimulated muscle in paralyzed individuals, when significant inertial loads and/or load transitions are present. The method used differs from earlier work, in that both the pulse width and stimulus period (interpulse interval) modulation are considered. A Hill-type time series model, in which the output is the product of two factors (activation and torque-angle) is used. In this coupled model, the activation dynamics depend upon velocity. Sequential nonlinear least squares methods are used in the parameter identification. The ability of the model, using identified time-varying parameters, to accurately predict muscle torque outputs is evaluated, along with the variability of the identified parameters. This technique can be used to determine muscle parameter models for biomechanical computer simulations, and for real-time adaptive control and monitoring of muscle response variations such as fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.