Abstract

This work presents a detailed study of aluminium-doped zinc oxide thin films sputtered at 100 °C, with a focus on the correlation between structural and electrical properties. The structural properties are identified by SEM microscopy and X-ray diffraction, while the electrical properties are described by means of the carrier concentration and the carrier mobility, both determined experimentally. The study consists of a set of thin films with thicknesses from ~16 to ~1120 nm. Our analysis shows that the electrical properties in each individual thickness layer gradually change with its distance from the substrate, which correlates very well to the changes observed in structural properties. Along with our experimental findings, we have designed a one-dimensional mathematical model based on the trapping states related to the grain boundaries. This model offers a deeper insight into the relation between the film structure and the film resistivity and allows identification of additional material characteristics such us the trap density at the grain boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.