Abstract

Abstract This paper focuses on a parameter identification algorithm of two-dimensional orthotropic material bodies. The identification inverse problem is formulated as the minimization of an objective function representing differences between the measured displacements and those calculated by using the scaled boundary finite element method (SBFEM). In this novel semi-analytical method, only the boundary is discretized yielding a large reduction of solution unknowns, but no fundamental solution is required. As sufficiently accurate solutions of direct problems are obtained from the SBFEM, the sensitivity coefficients can be calculated conveniently by the finite difference method. The Levenberg–Marquardt method is employed to solve the nonlinear least squares problem attained from the parameter identification problem. Numerical examples are presented at the end to demonstrate the accuracy and efficiency of the proposed technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call