Abstract

Discovering and developing the antimicrobial peptides are recently focused on pharmaceutical firm, since they serve as complementary to antibiotics in prevailing over drug resistance by eliciting the disruption of microbial membrane. Still, there are lots of challenges to bring up the structurally stable and functionally efficient antimicrobial peptides. It is well known that gramicidin D is the prominent antimicrobial peptide that exists as g-AB, g-BC, and g-AC. This study analyzes the structural stability and the functional activity of hetero-dimeric double-stranded gramicidin-D peptides, thereby demonstrating its potent antimicrobial activity against antibiotic-resistant micro-organisms. To investigate the structural stability and functionality of gramicidin D, we performed static and dynamic analysis. Initially, we observed a maximum number of intermolecular interactions and membrane penetration in g-AB as compared to g-BC and g-AC. To substantiate further, the geometrical and thermodynamic parameters revealed the retention of maximum stability in g-AB than g-AC and g-BC. Thus, the conformational free energy and the binding free energy showed the variation among gramicidin-D peptides for the prediction of increased stability and functionality. In conclusion, g-AB peptide has definitely demonstrated adequate structural stability and functionality and this work will need to be considered in peptide-based drug discovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.