Abstract

Soil salinity is a major abiotic stress that limits plant growth and agricultural productivity. Upland cotton (Gossypium hirsutum L.) is highly tolerant to salinity; however, large-scale proteomic data of cotton in response to salt stress are still scant. Here, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic technique was employed to identify the early differentially expressed proteins (DEPs) from salt-treated cotton roots. One hundred and twenty-eight DEPs were identified, 76 of which displayed increased abundance and 52 decreased under salt stress conditions. The majority of the proteins have functions related to carbohydrate and energy metabolism, transcription, protein metabolism, cell wall and cytoskeleton metabolism, membrane and transport, signal transduction, in addition to stress and defense. It is worth emphasizing that some novel salt-responsive proteins were identified, which are involved in cell cytoskeleton metabolism (actin-related protein2, ARP2, and fasciclin-like arabinogalactan proteins, FLAs), membrane transport (tonoplast intrinsic proteins, TIPs, and plasma membrane intrinsic proteins, PIPs), signal transduction (leucine-rich repeat receptor-like kinase encoding genes, LRR-RLKs) and stress responses (thaumatin-like protein, TLP, universal stress protein, USP, dirigent-like protein, DIR, desiccation-related protein PCC13-62). High positive correlation between the abundance of some altered proteins (superoxide dismutase, SOD, peroxidase, POD, glutathione S-transferase, GST, monodehydroascorbate reductase, MDAR, and malate dehydrogenase, MDH) and their enzyme activity was evaluated. The results demonstrate that the iTRAQ-based proteomic technique is reliable for identifying and quantifying a large number of cotton root proteins. qRT-PCR was used to study the gene expression levels of the five above-mentioned proteins; four patterns are consistent with those of induced protein. These results showed that the proteome of cotton roots under NaCl stress is complex. The comparative protein profiles of roots under salinity vs control improves the understanding of the molecular mechanisms involved in the tolerance of plants to salt stress. This work provides a good basis for further functional elucidation of these DEPs using genetic and/or other approaches, and, consequently, candidate genes for genetic engineering to improve crop salt tolerance.

Highlights

  • Soil salinity is one of the most important environmental factors limiting plant growth and productivity throughout the world (Munns, 2002)

  • An isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic technique was employed to compare the abundance of proteins in untreated and salt-treated roots for 24 h

  • One hundred and twenty-eight differentially expressed proteins (DEPs) were identified, 76 of which displayed increased abundance and 52 decreased under salt stress conditions. These DEPs are mainly involved in the biological processes of carbohydrate and energy metabolism, transcription, protein metabolism, cell wall and cytoskeleton metabolism, membrane and transport, signal transduction and stress and defense

Read more

Summary

Introduction

Soil salinity is one of the most important environmental factors limiting plant growth and productivity throughout the world (Munns, 2002). Excessive Na+ in the soil inhibits the absorption of mineral nutrients and moisture leading to the accumulation of toxic ions in plants. Plants employ several strategies to cope with salt stress. These include regulating the expression of specific proteins for the reestablishment of proper cellular ion and osmotic homeostasis with other concomitant processes of repair and detoxification (Chinnusamy et al, 2005). Salttolerance studies in plants provide insights into the molecular and biochemical basis of plant stress tolerance, which lead to crop improvement

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call