Abstract

This is a case report of a 51 year old male with marked splenomegaly, basophilia, severe thrombocytopenia, anemia and high SFKL phosphorylation downstream of Bcr-Abl, investigated for association of the e6a2 BCR-ABL fusion gene and marked basophilia. The treatment strategy implications in patients with Philadelphia positive CML are described. RT-PCR and sequencing were carried out on the peripheral blood leukocytes to detect the type of BCR-ABL transcript. The BCR-ABL mutational status was assessed using sequencing of the RT-PCR products. The in vitro test of sensitivity to TKIs was based on detecting inhibited phosphorylation of the Crkl and Phospho-Src family kinases (SFK, Tyr416) using immunodetection. The cytogenetics revealed 90% of Ph+ (Philadelphia) cells in the bone marrow aspirate with no additional clonal chromosomal abnormalities at diagnosis. This correlated with an accelerated phase of the CML. Sequencing analysis of reverse transcribed and PCR amplified BCR-ABL transcript revealed a rare e6a2 fusion, with no evidence for Bcr-Abl kinase domain mutation. Western blot analysis showed high phosphorylation (activation) of Crkl and the Src family of kinases (P-SFK). In vitro test of sensitivity of the patients' leukemic cells to imatinib demonstrated sensitivity of Bcr-Abl tyrosine kinase to imatinib, as assessed by a decrease in phosphorylated Crkl and the disappearance of P-SFK, suggesting that P-Src reflects only the Bcr-Abl-dependent Src activity. The initial treatment strategy was reduced imatinib and search for an unrelated hematopoietic stem cell donor (according to the ELN recommendations). The patient was allografted with peripheral stem cells from an HLA- identical male donor but on day +70 graft failure occurred. He was allografted again with the peripheral stem cells from an HLA-identical female donor, engrafted on day +15 and showed 100% donor chimerism with no evidence of the e6a2 BCR-ABL fusion transcript on day +30. The clinical disease course in patients with the rare e6a2 BCR-ABL transcript variant is aggressive. This may be the result of increased kinase activity due to partial loss of the guanine exchange factor/dbl-like domain which mediates the interaction with several Ras-like G-proteins involved in cell proliferation, signal transduction, and cytoskeletal organization. For the above reasons, these patients should receive stem cell transplant immediately after a short course of treatment with imatinib/ dual Src/Abl kinase inhibitor or they should be registered in clinical trials with experimental agents.

Highlights

  • Methodsreverse transcriptase-polymerase chain reaction (RT-PCR) and sequencing were carried out on the peripheral blood leukocytes to detect the type of BCRABL transcript

  • In over 95% of cases, the first step in the pathogenesis of chronic myeloid leukemia (CML) is the formation of the Philadelphia (Ph) chromosome

  • The presence of atypical, shorter BCR-ABL transcripts in CML is associated with an aggressive clinical course[5,6,7,8,16,17]

Read more

Summary

Methods

RT-PCR and sequencing were carried out on the peripheral blood leukocytes to detect the type of BCRABL transcript. The BCR-ABL mutational status was assessed using sequencing of the RT-PCR products. The in vitro test of sensitivity to TKIs was based on detecting inhibited phosphorylation of the Crkl and Phospho-Src family kinases (SFK, Tyr416) using immunodetection

Results
INTRODUCTION
DISCUSSION AND CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.