Abstract

A one-dimensional diffusion model based on Fick's second law with a non-zero surface concentration at the solid-solution interface was developed to calculate effective calcium and sulfate diffusion coefficients of composites placed in saltwater. A regression method was used to identify the leaching kinetics. The regression method decomposes the stabilized PG leaching processes into diffusion, surface wash-off, and immediate and long-term precipitation. The immediate surface precipitation of both calcium and sulfate ions occurred only in three of the PG composite combinations. The effective diffusion coefficients of calcium (2.58-4.68 x 10(-13) m2 s(-1)) and sulfate (2.77-5.02 x 10(-13) m2 s(-1)) obtained from the regression method are similar to those obtained from methods of cumulative flux and daily flux associated with the simple diffusion model, provided that the leaching processes do not deviate significantly from that of the diffusion. The ratio (1.13) of effective sulfate to calcium diffusion coefficients obtained using the regression analysis is statistically consistent with the theoretical value (1.31), which further justifies the regression method. The research also implies that the leaching processes of calcium and sulfate ions stop after a certain period of time (300-900 d for calcium and 80-170 d for sulfate) and that the precipitations of calcium and sulfate affect the leaching processes. The regression method can be used to identify the leaching mechanisms and to predict the long-term stability of the stabilized wastes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.