Abstract
Drug-disease correlations play an important role in revealing the mechanism of disease, finding new indications of available drugs, or drug repositioning. A variety of computational approaches were proposed to find drug-disease correlations and achieve good performances. However, these methods used a variety of network information, but integrated networks were rarely used. In addition, the role of known drug-disease association data has not been fully played. In this work, we designed a combination algorithm of random walk and supervised learning to find the drug-disease correlations. We used an integrated network to update the model and selected a gene set as the start of random walk based on the known drug-disease correlations data. The experimental results show that the proposed method can effectively find the correlation between drugs and diseases, and the prediction accuracy is 82.7%. We found that there are 8 pairs of drug-disease relationships that have not yet been reported, and 5 of them have pharmacodynamic effects on Parkinson's disease. We also found that a key linkage between Parkinson's disease and phenylhexol, a drug for the treatment of Parkinson's disease α-synuclein and tau protein, provides a useful exploration for the effectiveness of the treatment of Parkinson's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and mathematical methods in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.