Abstract

Minority carrier lifetimes in doped and undoped mid-wave infrared InAs/InAsSb type-II superlattices (T2SLs) and InAsSb alloys were measured from 77–300 K. The lifetimes were analyzed using Shockley-Read-Hall (SRH), radiative, and Auger recombination, allowing the contributions of the various recombination mechanisms to be distinguished and the dominant mechanisms identified. For the T2SLs, SRH recombination is the dominant mechanism. Defect levels with energies of 130 meV and 70 meV are determined for the undoped and doped T2SLs, respectively. The alloy lifetimes are limited by radiative and Auger recombination through the entire temperature range, with SRH not making a significant contribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call