Abstract
Cellular proteins extracted from normal and cancer cells bind polymerizing ADP-ribose transferase (pADPRT) on nitrocellulose membrane transblots. Histones at 1 mg/ml concentration completely prevent the binding of pADPRT to cellular proteins, indicating that the binding of histones to pADPRT sites competitively blocks the association of pADPRT to proteins other than histones. The direct binding of pADPRT to histones is shown by cross-linking with glutaraldehyde. The COOH-terminal basic histone H1 tail binds to the basic polypeptide domain of pADPRT. The basic domain present in the NH2-terminal part of core histones is the probable common structural feature of all core histones that accounts for their binding to pADPRT. Two polypeptide domains of pADPRT were identified, by way of CNBr fragments, to bind histones. These two domains are located within the 64-kDa fragment of pADPRT and are contiguous with the polypeptide domains that were shown to participate in self-association of pADPRT, ending at the 606th amino acid residue. The polypeptide domains of pADPRT which participate in DNA binding are thus shown to associate also with other proteins. Intact pADPRT binds to both the zinc-free or zinc-reconstituted basic polypeptide fragments of pADPRT. Histones activate auto-poly(ADP)-ribosylation of pADPRT by increasing the number of short oligomers on pADPRT. This reaction is also dependent in a biphasic manner on the concentration of pADPRT. Histones in solution are only marginally poly(ADP)-ribosylated but are good polymer acceptors when incorporated into artificial nucleosome structures.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.