Abstract

Clinical trials indicate that the dysregulation of microRNAs (miRNAs) is closely associated with the development of diseases. Therefore, predicting miRNA-disease associations is significant for studying the pathogenesis of diseases. Since traditional wet-lab methods are resource-intensive, cost-saving computational models can be an effective complementary tool in biological experiments. In this work, a locality-constrained linear coding is proposed to predict associations (ILLCEL). Among them, ILLCEL adopts miRNA sequence similarity, miRNA functional similarity, disease semantic similarity, and interaction profile similarity obtained by locality-constrained linear coding (LLC) as the priori information. Next, features and similarities extracted from multiperspectives are input to the ensemble learning framework to improve the comprehensiveness of the prediction. Significantly, the introduction of hypergraph-regular terms improves the accuracy of prediction by describing complex associations between samples. The results under fivefold cross validation indicate that ILLCEL achieves superior prediction performance. In case studies, known associations are accurately predicted and novel associations are verified in HMDD v3.2, miRCancer, and existing literature. It is concluded that ILLCEL can be served as a powerful tool for inferring potential associations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.