Abstract

In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. To gain a better understanding of the molecular basis of wheat heterosis, we carried out a comparative proteomic analysis in seedling leaves between wheat hybrid and parents. Common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) Line 3338 and spelt wheat (Triticum spelta L., 2n = 6x = 42, AABBDD) Line 2463 were used to produce a heterotic F(1) hybrid. The expression patterns of the total proteins were compared in seedling leaves between hybrid and its parents by using two-dimensional gel electrophoresis with two pH ranges for the first dimension separation. Among ~900 protein spots reproducibly detected, 49 protein spots were identified as being differentially expressed between hybrid and its parental lines (P < 0.05) for more than 1.5-folds. Six possible modes of differential expression were observed, including high- and low-parent dominance, underdominance, and overdominance, uniparent silencing and uniparent dominance. Moreover, 30 of the 49 differentially expressed protein spots were identified, which were involved in metabolism, signal transduction, energy, cell growth and division, disease and defense, secondary metabolism. These results indicated that wheat hybridization can cause protein expression differences between hybrid and its parents; these proteins were involved in diverse physiological process pathways, which might be responsible for the observed heterosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.