Abstract
Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease that affects exocrine glands. To study the molecular mechanism and identify crucial genes/pathways in pSS pathogenesis, the microarray-based whole-genome gene expression profiles from salivary glands of patients with pSS and non-sicca controls were retrieved. After normalization and subsequent batch effect adjustment, significance analysis of microarrays method was applied to five available datasets, and 379 differentially expressed genes (DEGs) were identified. The 300 upregulated DEGs were enriched in Gene Ontology terms of immune and inflammatory responses, including antigen processing and presentation, interferon-mediated signaling pathway, and chemotaxis. Previously reported pSS-associated genes, including HLA-DRA, TAP2, PRDM1, and IFI16, were found to be significantly upregulated. The downregulated DEGs were enriched in pathways of salivary secretion, carbohydrate digestion and absorption, and starch and sucrose metabolism, implying dysfunction of salivary glands during pathogenesis. Next, a protein-protein interaction network was constructed, and B2M, an upregulated DEG, was shown to be a hub, suggesting its potential involvement in pSS development. In summary, we found the activation of pSS-associated genes in pathogenesis, and provide clues for salivary glands dysfunction. Experimental investigation on the identified DEGs in this study will deepen our understanding on pSS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.