Abstract

Under hypoxia, mouse embryonic stem cells (mESCs) lose the ability to self-renew and begin to differentiate through down-regulation of LIFR-STAT3 pathway via hypoxia-inducible factor-1α (HIF-1α). However, it remains largely unknown what kinds of factors are involved in hypoxia-induced differentiation of mESCs. This study aims to identify the differentially expressed genes (DEGs) in early differentiation of mESCs under hypoxia. Here we utilized a Genefishing techniqueTM to discover the new DEGs during hypoxia-induced early differentiation in CCE mESCs. Next, we investigated the role of DEGs using morphological observation, alkaline phosphatase (ALP) assay, STAT3 activation analysis, and biomarkers analysis for stemness. We detected 19 DEGs under hypoxia and performed cloning with sequencing in six genes. We confirmed the expression patterns of five DEGs including H2afz and GOT1 by realtime PCR assay. Among them, H2afz was significantly decreased under hypoxia, depending on HIF-1α. H2afz-overexpressing CCE mESCs maintained their ALP activity and stem cell markers (Nanog and Rex1), even in hypoxic condition. On the other hand, the early differentiation markers such as FGF5 and STAT5a, which had been increased in hypoxic conditions, were reduced by H2afz overexpression. We discovered that H2afz could be a new target gene that functions in hypoxia-induced differentiation in mESCs and have revealed that it is involved in maintaining the pluripotency of mESCs in the early stages of differentiation. These findings will provide insights into mechanisms of hypoxia-mediated differentiation of mESCs during early development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call