Abstract

The RNA-Seq platform was used to characterize the high-temperature stress response of Chrysanthemum nankingense. A set of 54,668 differentially expressed unigenes was identified. After a threshold of ratio change ≥2 and a q-value of <0.05 were applied, the number of differentially transcribed genes was reduced to 3955, of which 765 were up-regulated and 3190 were down-regulated in response to heat stress. The differentially transcribed genes were predicted to participate in 26 biological processes, 4 cellular components, and 13 molecular functions. Among the most differentially expressed genes between the two libraries were well-recognized high-temperature responsive protein families, such as heat shock factors and heat shock proteins, various transcription factor families, and a number of RNA metabolism-related genes. Overall, the RNA-Seq analyses revealed a high degree of transcriptional complexity in early heat stress response. Some of these high-temperature responsive C. nankingense genes may prove useful in efforts to improve thermotolerance of commercial chrysanthemum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.