Abstract

Folate plays an important role in DNA and RNA synthesis by donating methyl groups. To investigate the effects of maternal folate deficiency (FD) on the abdominal adipose transcriptome and on the accumulation of lipid droplets in the liver tissue of chicken offspring, differentially expressed genes (DEGs) of FD were identified with digital gene expression tag profiling. Ultramicroscopy suggested that the size of lipid droplets in hepatocytes increased with FD, while the lipid droplets population number was largely not affected. The serum parameters assay showed that the concentrations of MTHFR (476.57 vs. 395.27), DHFR (45.056 vs. 38.952), LPL (50.408 vs. 48.677), HCY (4.354 vs. 3.836), LEP (9.951 vs. 8.673), and IGF2 (1209.4 vs. 1027.7) in offspring serum of the FD group were significantly higher than those of the normal folate (NF) group ( P < 0.01). The 442 DEGs between NF and FD groups were identified by digital gene expression profiling. Considering the DEGs in the FD groups vs. NF groups, 179 genes were upregulated while 263 downregulated, and in particular, 145 upregulated and 214 downregulated DEGs were successfully annotated with the nonredundant database. Gene Ontology analysis showed that FD mainly affected cellular processes, cell part and binding, cell killing, virions, and receptor regulator activity. With pathway analysis, it indicated that 123 unigenes were assigned to 115 KEGG pathways, but only five of 115 these pathways were significantly enriched with P values ≤ 0.05. Taken together, these results provide a foundation for further studying the responses of offspring to maternal FD in breeding chickens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.