Abstract

BackgroundBoth Culex quinquefasciatus and Cx. pipiens molestus are sibling species within Cx. pipiens complex. Even though they are hard to distinguish morphologically, they have different physiological behaviors. However, the molecular mechanisms underlying these differences remain poorly understood.MethodsTranscriptome sequencing was conducted on antennae of two sibling species. The identification of the differentially expressed genes (DEGs) was performed by the software DESeq2. Database for Annotation, Visualization and Integrated Discovery was used to perform GO pathway enrichment analysis. The protein–protein interaction (PPI) network was constructed with Cytoscape software. The hub genes were screened by the CytoHubba plugin and Degree algorithms. The identified genes were verified by quantitative real-time PCR.ResultsMost annotated transcripts (14,687/16,005) were expressed in both sibling species. Among 15 identified odorant-related DEGs, OBP10 was expressed 17.17 fold higher in Cx. pipiens molestus than Cx. quinquefasciatus. Eighteen resistance-related DEGs were identified, including 15 from CYP gene family and three from acetylcholinesterase, in which CYP4d1 was 86.59 fold more highly expressed in C. quinquefasciatus. Three reproductive DEGs were indentified with the expression from 5.01 to 6.55 fold. Among eight vision-related DEGs, retinoic acid receptor RXR-gamma in Cx. pipiens molestus group was more expressed with 214.08 fold. Among the 30 hub genes, there are 10 olfactory-related DEGs, 16 resistance-related DEGs, and four vision-related DEGs, with the highest score hub genes being OBP lush (6041148), CYP4C21 (6044704), and Rdh12 (6043932). The RT-qPCR results were consistent with the transcriptomic data with the correlation coefficient R = 0.78.ConclusionThe study provided clues that antennae might play special roles in reproduction, drug resistance, and vision, not only the traditional olfactory function. OBP lush, CYP4C21, and Rdh12 may be key hints to the potential molecular mechanisms behind the two sibling species' biological differences.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.