Abstract

Clusters of four simple sequence repeats (SSRs), AAC, AAG, AG and CAT, have been mapped physically to hexaploid wheat chromosomes; 15—24-bp synthetic oligonucleotides were labelled by random-primer labelling and used as probes for fluorescent in situ hybridization with standard formamide and low-salt conditions. AAC hybridized strongly to the pericentromeric regions and several intercalary sites of all seven chromosomes of the B-genome corresponding to N bands and enabling their identification. Most of the AAC sites also co-localize with AAG, although the strength of the AAC and AAG signal was often different at the same location. Not all heterochromatic bands showed AAC signals and a few AAC sites were detected that are neither AAG nor N band positive, revealing the complex and heterogeneous genome organization of wheat and identifying the four most frequent classes of banded chromatin. Clusters characterised by a high concentration of AG repeats were detected on chromosome arms 3BS, 4BL, 5BS and 5BL, adjacent to AAG sites. The only detectable CAT cluster was found on chromosome arm 3BL, making this oligonucleotide valuable in identifying this particular chromosome. SSR in situ hybridization is useful as a diagnostic tool in cytogenetics and for understanding genome organization in wheat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call