Abstract

This study presents the identification method of design parameters for single-action cylindrical spool-type restrictors of hydrostatic bearing. These parameters include restriction parameter, spool displacement parameter, and spring preload. The flow rates, inlet pressures, and outlet pressures are measured to be utilized for parameter identification of single-action cylindrical spool-type restrictors by using experimental equipment. This equipment-like an open-type planar hydrostatic bearing supports a worktable for changing recess pressure by changing apply load. Then, design parameters can be identified from the measurements of the inlet pressure, the recess pressure, average temperature, and the flow rate for each restrictor by using minimizing total error square between measured and identified quantities of flow rates. An identification method with experiments for single-action cylindrical spool-type restrictors of hydrostatic bearing is presented and designed. Also, the influences of design parameters on flow rate of single-action cylindrical spool-type restrictors are studied by experiments. The experimental equipment used in this study is our design, which can be used for all types of restrictors and hydrostatic bearings. This identification method for design parameters of the single-action cylindrical spool-type restrictors is reliable, valid, and accurate. The identification of design parameters is necessary for design change and calibration of single-action cylindrical spool-type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.