Abstract

Delivery of cholesterol to inner mitochondrial membranes is rate-limiting for steroidogenesis in the zona fasciculata of adrenal cortex. A protein that stimulates this process was isolated to homogeneity from bovine adrenal tissue. This protein's primary structure has been determined in its entirety by a combination of automated Edman microsequencing, fast-atom bombardment mass spectrometry (FAB-MS). The sequence was identical to that previously reported for bovine brain endozepine, except that it lacks the last two residues, -Gly-Ile, at the C terminus. To our knowledge, isolation of an endozepine-related protein from a tissue other than brain has not been reported previously. Endozepine competes with benzodiazepines for saturable binding sites in synaptosomes and in mitochondria of specific peripheral tissues. Previous reports have localized the adrenal benzodiazepine receptor to the outer mitochondrial membrane. In this report, we show that the prototypic benzodiazepine, diazepam, effects a stimulation of adrenal mitochondrial cholesterol delivery similar to that observed for endozepine. The effective diazepam concentration was consistent with that previously shown to displace a high-affinity ligand of the mitochondrial benzodiazepine receptor. The action of diazepam in adrenal mitochondria suggests that the mediation of corticotropin-induced steroidogenesis may be the physiological function of the peripheral-type benzodiazepine receptor. These studies provide new insights into the previously unknown function of peripheral benzodiazepine receptors and should allow new investigations into the stimulation of steroidogenesis by endozepines and benzodiazepines in the brain and in certain peripheral tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.